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Abstract 

Increasingly, NASA will rely on autonomous systems 
concepts, not only in the mission control centers on the 
ground, but also on spacecraft and on rovers and other 
assets on extraterrestrial bodies to achieve the full range 
of advanced mission objectives. While autonomy cost-
effectively supports mission goals, autonomicity supports 
survivability of remote missions, especially when human 
tending is not feasible.  Analysis of two prototype NASA 
agent-based systems and of a proposed mission involving 
numerous cooperating spacecraft illustrates how 
autonomous and autonomic system concepts may be 
brought to bear on future space missions. 

 

1. Introduction  
 

With NASA’s renewed commitment to outer space 
exploration, greater emphasis is being placed on both 
human and robotic exploration.  Even when humans are 
involved in the exploration, human tending of assets 
becomes cost-prohibitive or is not feasible.  In addition, 
certain exploration missions will require spacecraft that 
will be capable of venturing where humans cannot be sent.   

Until the mid-1980s, all space missions were operated 
manually from ground control centers.  The high costs of 
satellite operations prompted NASA and others to begin 
automating as many functions as possible.  In our context, 
a system is autonomous if it can achieve its goals without 
human intervention.  A number of more-or-less automated 
ground systems exist today, but work continues towards 
the goal of reducing operations costs to even lower levels.  
Cost reductions can be achieved in a number of areas.  
Greater autonomy of satellite ground control and 
spacecraft operations are two such areas. Autonomy is 
increasingly seen as a critical approach for all missions.   

Though autonomy will be critical for future missions, it 
is also necessary that these missions have autonomic 
properties.  Autonomy alone, absent autonomicity, will 
leave the spacecraft vulnerable to the harsh environment 
in which they have to work and most likely performance 
will degrade, or the spacecraft will be destroyed or will 

not be able to recover from faults. Ensuring that 
exploration spacecraft have autonomic properties will 
increase the survivability and therefore the likelihood of 
success of these missions. 

NASA needs autonomicity in its future missions to 
ensure they can operate on their own to the maximum 
extent possible without human intervention or guidance.  
A case can be made that all of NASA’s future systems 
should be autonomic, and exhibit the four key properties 
of autonomic systems: self-configuring, self-optimizing, 
self-healing and self-protecting [1,13].  The following 
discusses the need for each of these autonomic properties 
in NASA missions.   

 

2. Overview of Two Agent-Based Systems 
 
NASA GSFC has played a leading role in the 

development of agent-based approaches to realize 
NASA’s autonomy goals. Agents in the Lights Out 
Ground Operations System (LOGOS) acted as surrogate 
human controllers and interfaced with legacy software that 
controllers normally used, and with humans.  Based on the 
success of this first prototype, development began on 
ACT, an environment in which richer agent and agent-
community concepts were developed through detailed 
prototypes and operational ground-based and space-based 
scenarios.   

 
2.1 LOGOS 
 

LOGOS is a proof-of-concept system consisting of a 
community of autonomous software agents that cooperate 
in order to perform functions previously performed by 
human operators who used traditional software tools such 
as orbit generators and command sequence planners.  The 
agents were developed in Java and used an in-house 
software backplane for communication between the 
agents.  The LOGOS community architecture is shown in 
Figure 1.  LOGOS is made up of ten agents, some that 
interface with legacy software, some that perform services 
for the other agents in the community, and others that 
interface with an analyst or operator. All agents have the 
ability to communicate with all other agents in the 



 

 

community. A more detailed description of LOGOS is 
given in [12]. 

The System Monitoring and Management Agent 
(SysMMA) maintains a list of all agents and their 
addresses in the community and provides their addresses 
to other agents requesting services.  When started, each 
agent registers its capabilities with SysMMA and requests 
other agent addresses whose services it needs. 

 
2.2 ACT 

 
The motivation behind ACT was to develop a more 

flexible architecture than LOGOS for implementing a 
wide range of intelligent or reactive agents.  After 
developing ACT, sample agents were built to simulate 
ground control of a satellite constellation mission as a 
proof of concept.  Agents in ACT are built using a 
component architecture, where a component can be easily 
swapped in and out for easy removal of unneeded 
components for reactive agents and the inclusion of the 
necessary components to implement intelligent agents.  It 
also allows for new technologies to be added as they 
become available without affecting previously 
implemented components.  A simple (reactive) agent can 
be designed by using a minimum number of components 
that receive percepts (inputs) from the environment and 
react according to those percepts.  A robust agent may use 
more complex components that allow the agent to reason 
in a deliberative, reflexive, and/or social fashion.  The 
following are the components of ACT.   

Modeler: The modeling component maintains the 
domain model of an agent, which includes models of the 
environment, other agents, and the agent itself.  The 
Modeler is also responsible for reasoning with the models 
to act proactively and reactively with the environment and 
events that affect the model’s state.   

Reasoner: The Reasoner component works with 
information in its local knowledge base as well as model 
and state information from the Modeler to make decisions 
and formulate goals for the agent.  Currently, the Reasoner 
works more in a reactive manner.  

Planner/Scheduler: The Planner/Scheduler component 
is responsible for any agent-level planning and 
scheduling.  The planning component receives a goal or 
set of goals to fulfill in the form of a plan request.  This 
typically comes from the Reasoner component, but may 
be generated by any component in the system.   

Agenda/Executive: The Agenda and the Executive 
work together to execute the plans developed by the 
Planner/Scheduler.  The Executive executes the steps it 
receives from the Agenda.  If the preconditions are met, 
the action is executed.  When execution finishes, the 
Executive evaluates the post-conditions, and generates a 
completion status for that step.  The completion status is 
then returned to the Agenda.   

Agent Communications: The agent communication 
component is responsible for sending and receiving 
messages to/from other agents.  The component takes an 
agent data object that needs to be transmitted to another 
agent and converts it to a message format understandable 
by the receiving agent.   

Perceptors/Effectors: The Perceptors are responsible 
for monitoring the environment for the agent.  Any data 
received by the agent from the environment, other than 
agent-to-agent messages, enters through Perceptors.  The 
Effector is responsible for effecting or sending output to 
the agent's environment.  Any agent output data, other 
than agent-to-agent messages, leaves through Effectors.   

Agent Framework: The framework provides the base 
functionality for the components as well as the inter-
component communication facility. The framework allows 
components to be easily added and removed from the 
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agent while providing a standard communications 
interface and functionality across all components.   

 

3. ANTS: A Concept Mission 
 
The NASA Autonomous Nano-Technology Swarm 

(ANTS) mission [9,10] will be made up of swarms of 
autonomous pico-class (approximately 1kg) satellites that 
will explore the asteroid belt.  There will be 
approximately 1,000 spacecraft involved in the mission.  
Approximately 80 percent of the spacecraft will be 
workers (or specialists) that will have a single instrument 
onboard.  Some will be coordinators (called leaders) that 
will have rules that decide the types of asteroids and data 
the mission is interested in and will coordinate the efforts 
of the workers.  The third type of spacecraft are 
messengers and will coordinate communications between 
the workers, leaders and Earth.  Each worker spacecraft 
will examine asteroids it encounters and send messages 
back to a coordinator that evaluates the data and sends 
other spacecraft to the asteroid if necessary. 

This mission will involve a high degree of autonomy, 
and autonomic properties will enhance its survivability.  
To implement this mission a heuristic approach is being 
considered that uses an insect analogy of hierarchical 
social structure based on the above spacecraft hierarchy.  
A transport ship will assemble the spacecraft during the 
journey to the asteroid belt and then release them upon 
arrival. Sub-swarms will exist that will act as teams that 
explore a particular asteroid based on the asteroid’s 
characteristics.   

Team leaders contain models of the types of science 
they want to perform.  Relevant goals are communicated 
to the messenger spacecraft that then relay them on to the 
worker spacecraft.  The worker spacecraft then take 
measurements of asteroids using their specialized 
instrument until data matches the goal that was sent by the 
leader.  If the data matches the profile of the type of 
asteroid that is being searched for, an imaging spacecraft 
will be sent to the asteroid to ascertain the exact location 
and to create a rough model prior to the arrival of other 
spacecraft.   

 

4. Autonomic Properties of LOGOS 
 

Self-configuration.  LOGOS self configures when the 
GIFA agent receives signals from the GenSAA/Genie 
ground station software that a spacecraft pass is about to 
happen.  When this occurs, the GenSAA/Genie Interface 
Agent (GIFA) configures the system by waking up the 
needed agents for the pass.  For example, if there are no 
anomalies, then the Fault Isolation and REsolution (FIRE) 
agent is not needed and is not woken up.  The same is true 
for the visualization and the user interface agents.  If there 

is no user logged on, then those agents do not have to be 
woken up for the spacecraft pass. 

Self-optimization.  LOGOS self-optimizes through 
learning.  One example of this is through the learning by 
the FIRE agent when it does not know how to resolve an 
anomaly, and must notify an analyst that it needs help.  
After the analyst provides a set of commands to resolve 
the anomaly, the FIRE agent stores those commands and 
the anomaly in its knowledge base for future reference.  A 
second way that LOGOS self-optimizes is through the 
user interface and visualization agents.  These agents keep 
track of which analyst looks at what data so that that 
information would be pre-fetched and available to the 
analyst when he or she logs on to the system.   

Self-healing.  LOGOS self-heals primarily through the 
actions of the FIRE agent.  The FIRE agent examines 
anomalies that occur and then issues commands to 
resolve/heal the anomalies based on its knowledge base.  
It also self-heals through the intervention of the human in 
the loop, who can fill in information when the FIRE agent 
does not have the requisite knowledge to solve a problem.  
The self-healing aspect of LOGOS was its primary 
function and is what made the system lights-out. 

Self-protecting.  The self-protecting aspects of LOGOS 
are limited.  The self-protection is primarily performed by 
the FIRE agent and the user interface agent (UIFA).  
UIFA accomplilshes self-protection when it authenticates 
a user logging on to the system.  For the FIRE agent, self-
protection is accomplished when checking commands 
entered by the analyst to ensure they do not harm the 
spacecraft.   

 

5. Autonomic Properties of ACT 
 
Self-configuration.  As an example of this property, 

when ACT detects, from analysis of telemetry, that there 
is a problem, the Contact Manager alters the current 
satellite contact schedule to enable the problem to be 
addressed.  What is being reconfigured, in this case, is the 
spacecraft functionality for managing communications 
contacts with ground systems and controllers. 

Self-optimization.  As an example of this property, 
consider what happens when a Proxy Agent determines 
that a problem exists with its spacecraft.  When this 
situation arises, a replanning/rescheduling activity occurs 
to optimize the behavior of the entire ACT system. 

Self-healing.  Consider what happens when a Proxy 
Agent detects a problem with its associated spacecraft.  
Following a diagnosis of the problem (which may involve 
access to the human component of the ACT) corrective 
actions, in the form of commands, are generated and made 
ready for transmission to the affected spacecraft.  This 
problem-diagnosis/corrective-action cycle is a major part 
of ACT’s self-healing capability. 



 

 

It should be noted that the three autonomic responses 
discussed above all stem from ACT’s determination that a 
problem has occurred.  In attending to the problem, ACT 
reconfigures, tries to optimize its operations, and proceeds 
to diagnose and solve the identified problem. 

Self-protection.  ACT is self-protecting in the sense 
that it constantly monitors the spacecraft systems and 
modifies its operations if a parameter ranges outside its 
normal bounds.  In addition, it also has self-protection 
through validation of system commands to insure that 
command sequences executed will not harm the spacecraft 
or put it in a position where it could be harmed. 

 

6. Autonomic Properties of ANTS 
 
Self-configuration.  As asteroids of interest are 

identified, appropriate teams of spacecraft are configured 
to realize optimal science operations at the asteroids.  
When operations are completed, the team disperses for 
reconfiguration at another asteroid.  Reconfiguring may 
also be required as the result of a failure or anomaly.  The 
loss of a given worker may result in the role of that worker 
being performed by another.  Loss of communication with 
a worker may mean that the system has to assume loss of 
the worker, and the role may be allocated to another 
spacecraft.  Loss of use of an instrument by a worker may 
require the worker to take the role of a communication 
device. 

Self-optimization.  Optimization of ANTS is 
accomplished at the individual level as well as at the 
system level.  These optimizations are: 
• Rulers learning about asteroids 
• Messengers adjusting their position 
• Workers learning about asteroids 

Optimization at the ruler level is primarily through 
learning. Over time rulers will be collecting data on 
different types of asteroids and will learn the 
characteristics of the types of the asteroids that are of 
interest and the types of asteroids that are difficult to orbit 
or observe.  From this information, the system as a whole 
is being optimized since time is not being wasted on 
asteroids that are not of interest. 

Optimization for messengers is achieved through 
positioning.  Messengers need to provide communications 
between the rulers and workers as well as back to Earth.  
This means that a messenger will have to be constantly 
adjusting its position to balance the communications 
between the rulers and workers and adjusting its position 
to send data to Earth. 

Optimization at the worker level is primarily through 
experience gained with asteroids.  As a worker observes 
asteroids and builds up a knowledge base of the different 
characteristics of asteroids, a worker may be able to 
automatically skip over asteroids that are not of interest. 

Self-healing.  The view of self-healing here is slightly 
different from that given in [1].  ANTS is self-healing not 
only in that it can recover from mistakes, but self-healing 
in that it can recover from failure, including damage from 
outside force.  In the case of ANTS, these are non-
malicious sources: events such as collision with an 
asteroid, or another satellite, loss of connection, etc., will 
require ANTS to heal itself by replacing one spacecraft 
with another. 

ANTS mission self-healing scenarios span the range 
from negligible to severe.  A negligible self-healing would 
be where one member of a redundant set of gamma ray 
sensors fails before a general gamma ray survey is 
planned.  In such a scenario, the self-healing behavior 
would be the simple action of deleting the sensor from the 
list of functioning sensors.  At the severe end of the range, 
an example scenario would arise when the team loses so 
many workers it can no longer conduct science operations.  
In this case, the self-healing behavior might be to advise 
mission control and wait for instructions.    In some 
possible ANTS mission concepts, instead of “calling 
home” for help, an ANTS team may only need to request 
a replacement from another team. 

ANTS individuals may also have self-healing 
behaviors.  For example, an individual may have the 
capability of detecting corrupted code (software).  In such 
a case, self-healing behavior would result in the individual 
requesting a copy of the affected software from another 
individual in the team, which would enable it to restore 
itself to a known operational state. 

Self-protection.  The self protecting behavior of the 
team will be interrelated with the self-protecting behavior 
of the individual members.  The anticipated sources of 
threats to ANTS individuals (and consequently to the team 
itself) will be collisions and solar storms. 

Collision avoidance through maneuvering will be 
limited because ANTS individuals will have limited 
ability to adjust their orbits and trajectories, since thrust 
for maneuvering is obtained from solar sails.  Individuals 
will have to coordinate their orbits and trajectories with 
other individuals to avoid collisions.  The main self-
protection mechanism for collision avoidance is achieved 
through planning.  The ruler’s plans involve constraints 
that will result in acceptable risks of collisions between 
individuals.   

Another possible ANTS self-protection mechanism 
could protect against effects of solar storms.  Charged 
particles from solar storms could subject individuals to 
degradation of sensors and electronic components.  When 
the ruler recognizes that a solar storm threat exists, the 
ruler would invoke its goal to protect the mission.  In 
addition to its own protection, part of the ruler’s response 
would be to give workers the goal to protect themselves.   

As noted in the section on self-configuring behavior, 
after-effects of protective action will, in general, 



 

 

necessitate ANTS self-reconfiguration.  For example, after 
solar sails had been trimmed for the storm blast of solar 
wind, individuals will have unplanned trajectories, which 
will necessitate trajectory adjustments and replanning and 
perhaps new goals.  Further, in case of the loss of 
individuals due to damage by charged particles, the ANTS 
self-healing behavior and the self-optimizing behavior 
may also be triggered.  Thus, there is an interrelatedness 
of the self-protecting behaviors of the ANTS team and the 
ANTS individuals. 

 

7. Conclusions  
 

NASA missions represent some of the most extreme 
examples of the need for survivable systems that cannot 
rely on support and direction from humans while 
accomplishing complex objectives under dynamic and 
difficult conditions.  Future missions will embody greater 
needs for longevity in the face of significant constraints, in 
terms of cost and the safety of human life.  Future 
missions also will have increasing needs for autonomous 
behavior not only to reduce operations costs and 
overcome limitations of communications (signal 
propagation delays and low data rates), but also to 
overcome the limitations of humans to perform long-term 
space missions.  There is an increasing realization that 
future missions must be not only autonomous, but also 
exhibit the properties of autonomic systems for the 
survivability of both individuals and systems. 

As described, the LOGOS and ACT architectures 
provide for a flexible implementation of a wide range of 
intelligent and autonomic agents.  The ACT architecture 
allows for easy removal of components unneeded for 
reactive agents, and the inclusion of the necessary 
components to implement intelligent and autonomic 
agents.  It is also flexible so that additional unforeseen 
needs can be satisfied by new components that can be 
added without affecting previous components. 
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